728 research outputs found

    Inflationary spectra and observations in loop quantum cosmology

    No full text
    We review some recent progress in the extraction of inflationary observables in loop quantum cosmology. Inverse-volume quantum corrections induce a growth of power in the large-scale cosmological spectra and are constrained by observations

    Gravity on a multifractal

    Get PDF
    Despite their diversity, many of the most prominent candidate theories of quantum gravity share the property to be effectively lower-dimensional at small scales. In particular, dimension two plays a fundamental role in the finiteness of these models of Nature. Thus motivated, we entertain the idea that spacetime is a multifractal with integer dimension 4 at large scales, while it is two-dimensional in the ultraviolet. Consequences for particle physics, gravity and cosmology are discussed

    Diffusion in quantum geometry

    Full text link
    The change of the effective dimension of spacetime with the probed scale is a universal phenomenon shared by independent models of quantum gravity. Using tools of probability theory and multifractal geometry, we show how dimensional flow is controlled by a multiscale fractional diffusion equation, and physically interpreted as a composite stochastic process. The simplest example is a fractional telegraph process, describing quantum spacetimes with a spectral dimension equal to 2 in the ultraviolet and monotonically rising to 4 towards the infrared. The general profile of the spectral dimension of the recently introduced multifractional spaces is constructed for the first time.Comment: 5 pages, 1 figure. v2: title slightly changed, discussion improve

    New Models of f(R) Theories of Gravity

    Full text link
    We introduce new models of f(R) theories of gravity that are generalization of Horava-Lifshitz gravity.Comment: 16 pages, typos corrected, v2:minor changes, references adde

    Nonlocal gravity and the diffusion equation

    Full text link
    We propose a nonlocal scalar-tensor model of gravity with pseudodifferential operators inspired by the effective action of p-adic string and string field theory on flat spacetime. An infinite number of derivatives act both on the metric and scalar field sector. The system is localized via the diffusion equation approach and its cosmology is studied. We find several exact dynamical solutions, also in the presence of a barotropic fluid, which are stationary in the diffusion flow. In particular, and contrary to standard general relativity, there exist solutions with exponential and power-law scale factor also in an open universe, as well as solutions with sudden future singularities or a bounce. Also, from the point of view of quantum field theory, spontaneous symmetry breaking can be naturally realized in the class of actions we consider.Comment: 18 pages, 5 figures. v2: typos corrected, references added. Major changes are an expansion of the discussion of homogeneous perturbations and the inclusion of cosmological fluids in the dynamic

    2-point functions in quantum cosmology

    Full text link
    We discuss the path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories, with particular reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, deriving vertex expansions and composition laws they satisfy. We clarify the tie between definitions using a group averaging procedure and those in a deparametrised framework. We draw some conclusions about the physics of a single quantum universe and multiverse field theories where the role of these sectors and the inner product are reinterpreted.Comment: 4 pages, based on a talk given at Loops '11, Madrid, to appear in Journal of Physics: Conference Series (JPCS

    Gravitational waves from brane-world inflation with induced gravity

    Get PDF
    We calculate the amplitude of gravitational waves produced by inflation on a de Sitter brane embedded in five-dimensional anti-de Sitter bulk spacetime, extending previous calculations in Randall-Sundrum type cosmology to include the effect of induced gravity corrections on the brane. These corrections arise via a term in the brane action that is proportional to the brane Ricci scalar. We find that, as in the Randall-Sundrum case, there is a mass gap between the discrete zero-mode and a continuum of massive bulk modes, which are too heavy to be excited during inflation. We give the normalization of the zero-mode as a function of the Hubble rate on the brane and are thus able to calculate the high energy correction to the spectrum of gravitational wave (tensor) modes excited on large scales during inflation from initial vacuum fluctuations on small scales. We also calculate the amplitude of density (scalar) perturbations expected due to inflaton fluctuations on the brane, and show that the usual four-dimensional consistency relation for the tensor/scalar ratio remains valid for brane inflation with induced gravity corrections.Comment: 8 pages, 2 figure

    Degeneracy of consistency equations in braneworld inflation

    Full text link
    In a Randall-Sundrum type II inflationary scenario we compute perturbation amplitudes and spectral indices up to next-to-lowest order in the slow-roll parameters, starting from the well-known lowest-order result for a de Sitter brane. Using two different prescriptions for the tensor amplitude, we show that the braneworld consistency equations are not degenerate with respect to the standard relations and we explore their observational consequences. It is then shown that, while the degeneracy between high- and low-energy regimes can come from suitable values of the cosmological observables, exact functional matching between consistency expressions is plausibly discarded. This result is then extended to the Gauss-Bonnet case.Comment: 16 pages, 3 figures. v3: major revision. Changed title, updated references, rearranged material, new prescription for the tensor spectrum, new figures, extended and more robust conclusion

    Observational test of inflation in loop quantum cosmology

    Get PDF
    We study in detail the power spectra of scalar and tensor perturbations generated during inflation in loop quantum cosmology (LQC). After clarifying in a novel quantitative way how inverse-volume corrections arise in inhomogeneous settings, we show that they can generate large running spectral indices, which generally lead to an enhancement of power at large scales. We provide explicit formulas for the scalar/tensor power spectra under the slow-roll approximation, by taking into account corrections of order higher than the runnings. We place observational bounds on the inverse-volume quantum correction \delta ~ a^{- \sigma} (\sigma >0, aa is the scale factor) and the slow-roll parameter \epsilon_V for power-law potentials as well as exponential potentials by using the data of WMAP 7yr combined with other observations. We derive the constraints on \delta for two pivot wavenumbers k_0 for several values of \delta. The quadratic potential can be compatible with the data even in the presence of the LQC corrections, but the quartic potential is in tension with observations. We also find that the upper bounds on \delta (k_0) for given \sigma and k_0 are insensitive to the choice of the inflaton potentials

    Fractal universe and quantum gravity

    Full text link
    We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.Comment: 4 pages. v2: typos corrected; v3: discussion improved, intuitive introduction added, matches the published versio
    • …
    corecore